博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
阅读笔记Multi-task Learning for Stock Selection [NIPS1996]
阅读量:5273 次
发布时间:2019-06-14

本文共 2094 字,大约阅读时间需要 6 分钟。

Multi-task Learning for Stock Selection 

Joumana Ghosn and Yoshua Bengio

摘要 

用人工神经网络预测未来回报以便于做出对应的金融决策时,我们需要考虑是为每支stock训练一个独立的网络结构还是所有的stocks能够共享一个网络结构。本文采用了一种折中的方案:将每支股票的未来回报作为一个task,那么不同股票间的模型会共享一些参数,这是一种多任务学习的形式。这种方法的年收益比多种benchmarks高14%。

前言

以往的对于金融时间序列的研究展现了很强的非线性,由此可以理解ANN的应用广泛。这些模型融合多类解释变量:(1)技术变量:包括过去的价格序列;(2)微观经济股票变量(股票收益);(3)宏观经济变量(商业周期相关的信息)。本文重点探索这样的问题:不同股票对待不同变量的方式不同还是相同?

本文做了一系列实验:使用不同参数子集作为不同股票模型间的共享参数。

本文的实验数据:9 years of data concerning 35 large capitalization companies of the Toronto Stock Exchange.

本文的优化目标:directly optimize a financial criterion,而非minimize the mean squared prediction error。前者的效果要好于后者。

参数共享(parameter sharing)以及多任务学习 

训练数据:

优化目标:-the function of the desired output and the output of the learner

预测模型:

基于相似任务来自动选择假设空间的方法已经被广泛研究。这种研究的认为:学习器是嵌入到现实世界中多个相关的任务中的(many related tasks),学习一个任务的知识可以有助于更好更快的学习一个新的任务。一些方法认为这些相关的任务并不是同时可用的:一些以前学过的任务获得的知识可以转移(transferred)到新的任务上。这里我们研究的所有任务都是并行学习的,因为我们的任务不在于使用多任务学习的方式来改善学习效率,而是用来提高学习的泛化能力。以Baxter1995年的工作为例,为每个任务训练一个神经网络,这些神经网络的第一隐层是共享的,但是后面的各层是任务相关的。共享层(The shared layers):使用所有任务中的训练数据来获取知识,从而构建合适的内部表示。任务相关层(Task-specific layers):使用内部表示来学习任务相关的网络权重。

股票选择应用(Application of Stock Selection)

数据集:36  stocks (1986.2~1994.1,96 months) one can buy or sell monthly

5 explanatory variables (features): 2 macro-economic variables (yields of long-term bonds ; the Consumer Price Index); 

3 micro-economic variables (the series of dividend yields ; the series of ratios of stock price to book value of the company ; Spline extrapolation) 

train/test split: 前k年做training,接下来1年做testing (不同的训练窗口k=3,4,5,6,7)

四种不同的参数共享方式(four types of parameter sharing):

(1) sharing everything:共享所有的参数

(2) sharing only the parameters of the first hidden layers: 仅共享第一隐层的参数

(3) sharing only the output layer parameter:仅共享最后的输出层参数

(4) not sharing anying:为每个stock训练一个独立的模型 

 结论:

(1) 最好的结果:采用一个共享的隐层以及独立的输出层,性能改进原因在于允许一些参数是不共享 

(2) 共享一些参数比完全独立的模型得到的结果更一致

(3) 采用多任务学习得到的结果比benchmark结果要好 

 

参考文献:

1. Using a Financial Training Criterion Rather than a Prediction Criterion, Yoshua Bengio, 1996, Technical Report 

转载于:https://www.cnblogs.com/shuzirank/p/5969940.html

你可能感兴趣的文章
2012-01-12 16:01 hibernate注解以及简单实例
查看>>
iOS8统一的系统提示控件——UIAlertController
查看>>
PAT甲级——1101 Quick Sort (快速排序)
查看>>
python创建进程的两种方式
查看>>
1.2 基础知识——关于猪皮(GP,Generic Practice)
查看>>
迭代器Iterator
查看>>
java易错题----静态方法的调用
查看>>
php建立MySQL数据表
查看>>
最简单的线程同步的例子
查看>>
旅途上看的电影和观后感
查看>>
qt实现类似QQ伸缩窗口--鼠标事件应用
查看>>
Ztree异步树加载
查看>>
关于IE和火狐,谷歌,Safari对Html标签Object和Embed的支持问题
查看>>
poj3320 Jessica's Reading Problem(尺取思路+STL)
查看>>
分布式计算开源框架Hadoop介绍
查看>>
安卓平台接口剖析
查看>>
坏的事情不都会带来坏的结果
查看>>
RPC的基础:调研EOS插件http_plugin
查看>>
第二次团队冲刺第二天
查看>>
bzoj 2257 (JSOI 2009) 瓶子与燃料
查看>>